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ABSTRACT

Kramers theory of the rates of chemical reactions is reviewed
and some recent advances are surveyed. A special attention is given
to extensions of the theory to models with more than one coordinate
Tt is stressed that important new features may arise from the coup-

ling of the reaction coordinate to unreactive normal modes.

1. INTRODUCTION

Classical dynamics stochastic theories of chemical reacticons ha-
ve received a great deal of attention in recent years. The approach
originally used by Kramersl’2 has been generalized and new domains
of application discussed. In this section I shall present the main
ideas of Kramers' model and summarize its major results.

A multitude of processes in Physics and Chemistry involve the

activated escape of a "particle” over a barrier: the dynamics of
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Fig. 1. One-dimensional double well pctential.

{+) Presented at the XIVth Congress of the Quantum Chemists cf La-

tin Expression, Louvain-la-Neuve (Belgium), 29.May-2.June, 1983.

0166-1280/84/$03.00 © 1984 Elsevier Science Publishers B.V.



140

certain spin~glass models; the diffusion; the surface catalysis;
the electron or proton transfer; the reactions in proteins; the
chemical reactions in solution. The common feature of these models
is that a particle is considered to be in a double well potential
(Fig. 1}. The two well regions, A and B, may ke identified with
"reactants” and "products" and are separated by a potential barrier
in the region C. Furthermeore, the particle is assumed to be under
the effects of a "heat-bath" which acts through irregqular forces
that must be added to the systematic, deterministic force origina-
ting from the potential V{x).

Kramers considered an ensemble of particles, initially all in
well A, and studied their subsequent escape over the barrier, this
process being identified with the chemiéal reaction. No back migra=
tions across £ into the left-hand sidewell are considered, wﬂat is

better represented by the one-well potential in Pig. 2.

t— ©—10

Fig. 2. Kramers potential model.

The prcbability distribution of the particles in phase space
{position and velocity) is governed by an equation of motion of a
general class known as Fokker-Planck eguations. In order to obtain
simple analytical results, Kramers made a number of simplifying

hypotheses, namely (i) the potential is parabolic near A (V(x) =
= 3 w2 ¥%) and near C (V(x) = 0 - z wé %%) and (ii) the height of
the barrier is much larger than the thermal eneray, ¢ »>> kT, so

that the escape of particles over the barrier is very slow and the
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eguilibrium distribution in the well is very little disturbed. Un-
der this assumption, the following general expression for the rate

escape was obtainedl’2

K = - T(g2/4 + wo)i/?2 - 6/2] exp(-Q/kT) (1)
2ch c

where B is proportional to the dynamical friction, n (see below).
This expression contains the correct Arrhenius factor and the pre-
-exponential part depends on the shape of the peotential and the vis
cosity of the medium. Two limit cases of eg. {1} may be of some in-

terest.

{I) The overdamped case. When the friction is very high, e>>2mc,

the heat bath interacts rapidly with the ensemble of particles so
that the thermal equilibrium of the wvelocity coordinate is maintai-

ned. In this situation eq. (i) may be simplified to

w 1]
K =25 exp (~0/kT), (8>>20). (2)

2w 8

This very result may be cbtained directly if, instead of the general
Fokker-Planck equation for the distribution W(x,u,t), one considers
the so called Smoluchowski eguation, the eguation of motion of the
probability distribution in position space, W{x,t). This latter
equation is obtained on the assumption that thermal equilibrium is
always maintained in the velocity as we shall discuss below. The

particles will then have a purely diffusional motion.

(IT) The intermediate friction case. If we assume B<<2mc to be wvalid

eq. (1) is simplified to

A
K = 30 exp (-Q/«T), (B<<2u.). (3)

This is the same expression as obtained in transition state theory
(TST). The coupling toc the heat bath is sufficiently weak for the
barrier crossing to be negligibly perturbed but it is sufficlently
high to provide a continued equilibrium distribution of reactive

high energy species.

{III) The very small friction case. When the reactive system inte-

racts very weakly with the medium, eg. (1} fails as the reaction
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rate is governed by the energy flow within the well up to the
threshold value of the barrier height. Kramersl showed that, in
this region the reaction rate increases with the increase of the
viscosity of the medium. As shown by Grote and Hynes3, for low
barriers (relative to «T) the rate constant is reduced by the inef-
ficient energy transfer in the bottom portion of the well; for lar-
ge barriers, the much more efficient non-adiabatic regime near the
top of the barrier may become dominant,

The three kinetic regimes just discussed may be represented

schematically as in Fig. 3.

rate
of the|Diffusional Inertial regime Energy-diffusion
reaction| Tegime controlled regime
(high frictien) (intermediate friction) (low friction)
"TST H

1/8 (8 = friction)

Fig. 3. Reaction rate regimes according to Kramers.

Before starting the discussion of more specific topics of reac-
tion rate theory, it may be useful to ocutline some general results
of the theory of Brownian motion4 that is instrumental to XKramers
theory and to the more advanced models discussed later in this pa-
per. Consider a particle {assumed spherical for simplicity) of ra-—
dius a and mass m that moves in an external field of force but, in
addition to this, is subject to irregular forces from the surroun-
ding medium which is assumed in thermal equilibrium. The equation
of motion of the particle may be written in the form of a Langevin

equation,

u = x

v = —~gu + Fx,t) + A{t} (4)
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where (-pu) represents the dynamical friction with
g = 61 a n/m (%)

and n is the coefficient of wiscosity. F{x,t) is a deterministic

force which is related to some potential as
F=- %, {6)

A{t) is a fluctuating force which is assumed (i) independent of u
and (ii)} to vary very rapidly as compared tc the variations of u.
A solution of the stochastic differential eguation (4) is to ke
understood as a probability distribuition W(u,t; xo,uo) for the ve-
locity of the particle given the initial velocity u, and initial
position gt The theory of the standard Brownian motion is cbtained
from this formalism in the particular case F = 0. It may be shown
that eq. (7) is

o 1/2 —miu—uoe—ﬁti2
W(u,t;uo) = E;*www——:ig?;] exp{ ) (7}

-28%

kT (l-e 2eT(l-e ¥

a gaussian distribution for the velocity ulat time t} with an avera
-8t —261‘_) KT/m:ll/z-

ge u_ e and a standard deviation [(l-e
The probability distribution for the position coordinate x may

also be derived. This satisfies the limits

2 2,2 -1
<fx=x_ 1> ~ u t for t<<f {8)
<!x~xo}2> ~ 6Dt for t>>3_l (9)
where the diffusion constant introduced has the value
_ T _ T
D= mg T bran {10}
For large times, t>>B_l, the probability distribution of the posi-
tion obbeys a simple gaussian distribution,
1,172 E"""0!2 ~1
W(X,t;xo,uo)'v (?ﬁ‘.\—t) exp(_-— _%ME—)’ for t»»8 {11)



i44

The vality of this theory has been confirmed experimentally, name~
ly by Perrin5 who observed the displacement of small grains {a =
= 2.1 x 10~7m) in viscous solutions. The values of the Boltzmann
constant thus obtained are consistent with those obtained by other
methods. This provides a a pesterior? validation of the Langevin
eguation.

In gquite general terms, it may be shown4 that the probability
distribution in phase space W(x,u,t) satisfies the folliowing parti-

al differential equation - the Fokker-Planck equaticn

51

3W + ua W+ Faa W= g oo () + g ER a2 w (12)
The left-hand side of this equation containsg the fluid-dynamics
deterministic terms and the right-hand side the terms originating
from the Brownian motion.

BEqg. (12) is sometimes given the name of Chandrasekhar equation,
the name of Fokker-Planck equation being reserved for the eguation
of motion of the probability distribution in velocity space
Wiy, t),

3,0 =8 3 - (Wu) + ¢ ljfn?: ai W (13)
A last ceomment should be made about the Langevin equation {4). The
dynamical fricticn {-gu) and the stochastic force A(t} have the
same physical origin, namely the interactions of the system with

a "heat-bath" assumed in thermal eguilibrium. It is not unexpected,
therefore, that they should be related. In fact they satisfy the

relation
1 e
B = m f dt <A(O) .A(t)> (1.4)

-

that is a particular example of the fluctuation-dissipation theorem.

2. BIOMOLECULAR REACTIONS

Frauenfelder6 has been interested, and led a large research
group for the last fifteen years, in the study of the dynamics of
proteins and particularly the chemical reactions that cccur in
proteins. One of the prccesses that were studied more thoroughly
is that of the binding of dioxigen o myoglobin (Mb). The process

is obviously very complex as the dioxygen has to migrate from the
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bulk of the sclution up to an active site in the protein's interior
before the actual binding can occur.

Myoglobin contains7 about 150 amincacids and has a molecular
weight of about 18000; when folded (tertiary structure), it is glo-
bular and has a diameter of about 5 mm. The active center is proto-
heme {(ferrous protoporphyrin IX). The 0, (or CO) binds as an axial
ligand to the heme iron. Myoglobin stores oxigen in muscles.

To study experimentally the binding processs, the heme system
with bound ligand is photedissociated by a flash from a dye
laser; the subsequent rebinding is followed optically for times
from 2us to lKs. Mixtures of water with glycerol, sucrose, ethylene

glycol and methanol were used to vary the solvent viscosity.

i
108 106 1074 1072
t/s

Fig. 4. Recombination of dioxigen to myoclobin at 280K.

N(t) is the fraction of Mb molecules that have not rebound 0, at ti
me t. The initial rise is due to the photodissociation during the
laser flash. In the subsequent decay, at least three processes with
well separated characteristic times (signaled by the arrows) can be
identified. {(Adapted from ref.8.)}

Before the flash, the ligand is bound at the heme iron, state A of

scheme below
kAB kBC kCS

A > B C s
kBA kCB kSC

The photcoflash breaks the bond and state B is formed. From there,
the iigand may either recombine with the metal or migrate ocut
through the protein into the solwvent, §. Analysis of the coupled
differential eguations associated with the multi-step kinetics and
fitting tc the experimental data above lead to the calculated rates
for the different steps at given temperature and solvent viscosity.

The effect of the temperature con the rate may be felt directly
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through an Arrhenius-type dependence and through a change of the
solvent viscosity. The disentanglement of the two effects requires
the colliection of a large set cof data taken at different temperatu-
res and in different solvents.

Frauenfelder and ce-workers have fitted the experimental data teo
a heuristically mcdified Kramers eguation (eq. 2} . They argued that
the viscosity of the solvent is not felt directly at each barrier
¢ressing inside the protein. In fact, while the cutermost barrier
seemslo to be formed by the solvent, the innermost cne must be
originated by the heme and the middle cone by the structure of the
protein., Myoglobin has been shownll to have a solid like core and
semiliquid regions towards the exterior. It is therefore reasonable
to assume that, even inside the protein, the damping caused by the
solvent will be felt but attenuated o some extent. It is assumed

that

8inte}:nal “

The modified equaticn for step i + 3 is assumed to be cf the form

A, L
= (1 © -
Kij ( = Aij) exp ( Hij/RT) {15}
il
n
TABLE 1

Paranmeters of the rate equation{l5) for the multistep process
Mb + 0y #* MbOz(Ref.Q}

Transition log Ay, log AJ, K #%/kJ mol™t
i (a) (b) (c)
B > A 0 8.5 0 (9)
B+ C 14.1 12.9 0.4 35
C + B 13.1 11.4
C S 13.1 (<10.5) 0.5 35
s + ¢ 14.¢9 12.9

i

(a} Units s M_l(cp)k for §+C and s_i(cp)k for all other.

(b) Units s M ™ for $+C and s | for all other transitions.
. - I _ ar
(c) The assumption was made that kij = kji' Hij Hji but no marked

changes appear if this constraint iz released.
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The problem c¢f the attenuation of the sclvent viscosity effect at
barriers deep inside the protein has attracted the interest of se-
veral workers recently. Reichl12 studied the diffusion in a multi-
well potential with spatially varying viscosity and showed that in
formation about solvent viscosities could be transierred to transi
tion rates over internal barriers simply through boundary effects.
Pursuing a different line, Hangg113 used a generalized Langevin
equation formalism and showed that a particular freguency dependen-—
ce of the dynamic friction could lead to a nk dependence of the

reaction rate.

3. MULTIMODAL THEORIES

In Kramers theory the chemical reaction process is described by
a single coordinate. Using such a theory for a system as complex as
a bicmolecular reaction is obvicusly a very c¢rude and risky approxi
mation. Real systems do usually require a many-coordinate descrip-
tion and the coupling of the different modes may play an important
role. In this section we shall examine certain consequences of the-
se couplings and start by an introduction to general multiplicative
noises, i.e., a type of fluctuating force that may appear in a mode
as as conseguence of additive stochastic forces in other modes

coupled to it.

A, MULTIPLICATIVE NOISES
Let us congider the following autccatalytic reaction

k1

A 4+ X ——> 3X
[}
kl
k2

B+ X ——>C

and assume that the concentrations of A and B are kept constant, on

average,

- o =
tal = [a]Y =+ 6p by = 0
(g] = |B|° + &.. <§ > = 0



148

we follow the concentration of |[X| = x,

S 1xl = 0y 180k 131 2] =k %] P+ 0ep 5,7k 50 ]

With the appropriate identifications, this equation may be written
in the form

k=dx-bxo +xF (16)

where F represents the multiplicative fluctuating force with an

intensity related to parameter @,
<F{o} F(t)> = Q §i(t}. (17

The stochastic differential equation {16) has been studied by

Schenzle and Brandl4. Its associated Fokker-Planck equation is

_ _ 3,1 1.2 ,.2
3, P = -o {{dxb x + 50 x} P} + 350 3, {x"P}. (18)

The steady state solution of (18) is

x2d/0-1 exp (- 8 %) {19)

Po(x) = N
The most probable values of x is given by

0 if d =

Jla-d/p 1f a s

3] | S T | o
o

[e]

(20)

which should be compared with the stationary solutions of the deter
ministic equation (F=o) associated with eg. (16), o and vd/G.

We see that there is a change of regime induced by the intense mul-
tiplicative noise. When an additive noise of the usual kind is con-
sidered in eq. {16}, the stationary distribution Po assumes a fini-

te wvalue at x = o even above the threshceld values Q = 24.
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B
1.5+ Q=5
1.0}
Q=i
Q=2
0.5}
0] 1 I
0 1 2 X

Fig. 5. Steady state sclutions Po{x), eg. (1%). Parameters were
given the walues d=1, b=1l. The singularity at x=o that appears
when Q>2d is suppressed when an additive noise is considered even
if this is very weakl4.
B. COUPLING OF THE REACTION COORDINATE TC TRANSVERSE NORMAL MODES
In conventional thecries of chemical reactions some sort of
averaging is made, assuming that thermal eguilibrium prevails in
all but one coordinate. This is expected to be a c¢rude approximati-
on in many actual systems. In this section, we shall discuss twe
typical recent attemps to use more detailed models, one te bring in
the effects of the solvent, the other to deal directly with a two-
~dimensional coupled system. Grote and Hynesl5 studied the coupling
that may be induced by the solvent. Even in a simples reactive

system like the triatomic process

[ [ [
-® ©— ®
— 1 -~ =1}
= 1 4 [golvent —r et o (3
forces;
bt —e (20513

Fig. 6. Reaction AB + C % A + BC. The solvent forces induced by the
symmetric vibration {assumed different due to the nature of atoms
A and ) may induce a mixture of translation ant symmetric and asym
metric vibrations. The asymmetric vibration is the reactive mode.

in fig. 6, the sketch shows how the reactive and non-reactive modes
may be coupled by the solvent.
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Christoffel and Bowman16 took ancther extreme view to introduce a
coupled model, As a model for an isomerization reaction, they con-

sidered a Z2-dimensicnal model potential inspired on that of amonia,

Vix,v) = {% a x2 + % b x4 + V, exp(-c xz)} + %m{hy(x)]z y2 (21)
with
0y (x) = oy {1-1 exp(-a %%) 7. (22)

It has the form of a double-well oscillator coupled to a transverse
harmonic mode. Both gquantum-mechanical calculaticns and classical
trajectory studies were performed.

At the adiabatic level of approximation, the problem is reduced
tc a l-dimensional one with an adjusted potential, the shape of
which depends on the energy of the transverse mode. As enerqgy is
pumped intc this mode, a third well may be created in the region
of the top of the barriex. This has drastic effects on the kinetics
as new states may originate if the third well is sufficiently large

Fonseca et al.l7

extended the application of the coupling models
to regions where the time scales are not s¢ clearly separated. In
this way, ilmportant corrections to the adiabatic approximation are
obtained. Furthermocre, the transmission of thermal fluctuations
through the transverse mode causes interesting multiplicative noi-
se effects.

A 2-dimensicnal petential similar to that of Christoffal and

BOWmanl6 was usedl7.

Viy) = (Vp/ah) Fea®)? v L o (0]? ¥ (23)
=400 + 3 &2 I v (24)

with

meff(x) = W {l—Aint exp{ﬁxz/rz}}'/2 {25)

The phenomenological equations of motion of the variables x, X .

v, v may be written
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= (26)
TE o (x) -y v () y2 + fl{t) (27)
VY =w (28)
b= oW -y 9 -y el + 50 (29)

The random forces fl and f2 are §=-correlated,

<fi(o) fj(t)> = 2Di dij d{t) (30)

The complete Fokker-Planck equation may be written

at D{Xl‘YIVFWIt) = {_aX + gt (x) + % v y2 aV +

+Y[BVV+<V2> a‘?;[—

- 2
-w By + v ¢ {x) by T Y Wy aw +

+a [, w o+ <wls B‘fl{p(x,y,v,w,t) (31)

but it is too ccmplex to be solved directly. A special technigue
of adiabatic eiiminatiOnl7 was used; this is a perturbational methaod
that allows the introduction of corrections up to the desired accu-

racy. The wvariables of the problem are separated in two sets,

the variables of interest «

and the irrelevant variables &

and variables in one set are assumed to be only weakly compled to
variables in the cther set. Three time scales can be considered:
T,r Th and 1. = l/Ll, the inverse of the coupling lagrangian betwe-

1
en variables o and b, with the folleowing relations

T <<

b 1
T << T
b a’

A Zwanzig prejection operator onto the space of variables g is de-
fined so that any time dependence of variables b ig projected out:

P o= 9 (m /db plasb,t). (32)
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The result of the elimination procedure on edq. (31) may be cast
into

t

at P g = L P g+ P Ll P 5 o+ "é ds P Ll(t) {1-P) Ll{S) P 5 (s}

+ (higher order terms in rb/rl). (33)

This equation shows how the relevant part of p is driven by La and,
indirectly (after extraction of the relevant part) by Ll' The last
term (the first of the perturbation expansion) brings in an effect
which is carried by the irrelevant wvariables from time s to time t.
At low friction, x and v cannct be separated and we must use
a = (x,v), b = (y,w}. The progress of the reaction may be measured
by <x> or, in alternative, by the total population in one well. In
the diffusional limit, x is the only relevant variable and then
a =%, b= (v,y,w}. In this case, the adiabatic elimination discus
sed above allows a discussion of the importance of the standard
adiabaticl® terms compared with new terms that are now found to gi

ve large contributions to the reaction ratel7.

K
o
100
10}F
1 ; . . . - ; . é
. 2 .3 -4 .5 .6 7 .
o 4 h Aine

(o

Fig. 7. Variation of the reaction rate with the coupling parameter.
Parameters were given_the values Vg = 3.3x10-7, % = {.183, r =
0.366, <v@> = 2.0x1077, v = 1,0x10%2, and <vZ> wf = 85xVY,. The de-
cay rate in the absence of interaction is Ky = 30.0x107°. The
threshold value of ;. is i, = 0.55 {Adapted from ref. 17.)
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Very interesting analytical results may be obtained for r>wa
(long range of the coupling potential compared to the double well
width -~ see egs. 23 to 25). The equation of motion of the distribu—
tion of the position coordinate, p(x,t), may be cagel? into the
form of eg. (18) which was studied by Schenzle and Brandl4. As
discussed in section A, above, there is z threshold value which is
assoclated with a change of regime. This is well apparent in fig.7,
where the calculated reaction rate is plotted against the intermo-
dal coupling parameter of eq. (25).

To explore further into the low friction region where the time
scales of x and v are similar, a first-passage time procedure}"7
was devised. A change of variables, {x,v) -+ (x,E}, is made and the

problem is studied as one of slow diffusion on energy,
B
3y p{x,E,t) =L p(x,E,t}. {34}

The reaction rate is calculated as the inverse of the average first

17

—passage time. The results of this calculation are reproduced

on the right-hand side of fig. 8.

K’

Q

Fig. 8. Variation of the reaction rate with v%scosity of the medium
The variable on the abscissae is R = I,/y = w5/2y. The curves on
the left-hand side were obtained using’a continued-fraction procedu
rel® to solve eq. (33); those on the right-hand side were cal-
culated by a first-passage time technigue. Parameters were given
the yalues Vo = 2,x1077,’a = 0.5, r = 1.0, and <y2» wg =

= <vf>= <w?> = 1.0x10-7, (Adapted from results in ref. 17.)
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The results obtained are interpreted as a synergism of inertia and
multiplicative ncise. Indeed, the fluctuations in the transverse
mode become ineffective near the top of the barrier so that inertia
is essential for it to be overcome. When figs. 8 and 3 are compared,
it is clear that the complex program of research described above gi
ves a computational confirmation of the general qualitative featu-
res initially predicted by Kramers. In the detail, interesting new
effects are found where the multiplicative noise plays a crucial ro
le.
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